

ТСАD-SPICE МОДЕЛИРОВАНИЕ СУБМИКРОННЫХ И НАНОМЕТРОВЫХ ЭЛЕМЕНТОВ КМОП СБИС С УЧЕТОМ РАДИАЦИОННЫХ И ТЕПЛОВЫХ ЭФФЕКТОВ В РАМКАХ РОССИЙСКО-КИТАЙСКОГО ПРОЕКТА

К. О. Петросянц^{1,2}

¹ НИУ ВШЭ (Московский институт электроники и математики им. А.Н. Тихонова), Москва

² Институт проблем проектирования в микроэлектронике Российской академии наук (ИППМ РАН), Зеленоград, Москва

Заседание научного совета ОНИТ РАН Москва, 18.11.2020

Содержание

Введение: цели и задачи проекта

- 1. Научно-технические заделы участников проекта
 - <u>с российской стороны</u>: библиотеки TCAD и SPICE RAD-THERM моделей микро- и нанометровых компонентов КМОП СБИС;
 - <u>с китайской стороны</u>: тестовые структуры и приборы SOI FD MOSFET и FinFET, результаты измерений характеристик приборов under test в диапазонах температур и радиационных воздействий.
- 2. Промежуточные результаты выполнения проекта:
 - TCAD модели и SPICE модели 0,2 мкм SOI и Double-SOI MOSFET структур при воздействии ү-излучения;
 - оценка чувствительности 4Т ячеек SRAM на структурах 0,2 мкм SOI и Double-SOI MOSFET к воздействию ОЯЧ с помощью TCAD-SPICE моделирования;
 - TCAD и SPICE модели FinFET (Vanderbilt Univ. и IMECAS);
 - low-T SPICE модели 28 нм bulk MOSFET и 0,18 мкм SOI MOSFET.
- 3. Совместные публикации в 2020 году.
- 4. Планы на 2021 год.

Цели и задачи проекта

Исследование радиационных эффектов в наноразмерных MOSFET, в том числе, со структурой 28 нм FD SOI и 22 нм FinFET с целью создания соответствующих тестовых структур, радиационных экспериментов и расчетных моделей.

Обязательства сторон:

А. Китайская сторона. (Институт микроэлектроники НАН Китая) – изготовление тестовых структур и приборов, радиационные эксперименты, измерения электрических характеристик приборов. <u>Б. Российская сторона.</u> (ИППМ РАН) построение TCAD и SPICEмоделей, экстракция параметров моделей из результатов измерений, предоставленных китайскими партнерами.

НАУЧНО-ТЕХНИЧЕСКИЙ ЗАДЕЛ РОССИЙСКОГО КОЛЛЕКТИВА

ДВЕ БИБЛИОТЕКИ МОДЕЛЕЙ МИКРОЭЛЕКТРОННЫХ КОМПОНЕНТОВ ДЛЯ САПР СБИС

✤ TCAD-RAD-THERM моделей п/п структур в среде Sentaurus Synopsys;

✤ SPICE RAD-THERM моделей дискретных п/п приборов и компонентов ИС, встроенных в HSPICE, LTSPICE, OrCad, Eldo, Spectre, СИМИКА и др.

Обе библиотеки содержат:

- 1. модели МОПТ, МОПТ КНИ/КНС, Si БT, SiGe ГБТ, GaAs/GaN MESFET, мощных ДМОПТ, БТ, IGBT и др., учитывающие влияние нейтронов, электронов, гамма- и рентгеновских лучей, протонов, импульсного излучения, одиночных ядерных частиц;
- 2. модели приборов п. 1, учитывающие влияние внешней высокой температуры (до +300°С) и внутреннего эффекта «саморазогрева»;
- 3. модели приборов п. 1, учитывающие влияние низких (до -263°С) температур (для схем криогенной электроники);
- 4. модели пассивных компонентов и межсоединений в виде компактных пассивных R_tC_tL_t цепей с температуро-зависимыми параметрами.

Модели превышают зарубежный уровень по части учета ВВФ; аттестованы рядом ведущих отечественных предприятий.

Основные преимущества:

- отработанная система экстракции параметров, доступная и понятная разработчикам;
- учет совместного влияния нескольких ВВФ и эффектов старения;
- расширенный температурный диапазон (-263...+300°С)

ПУБЛИКАЦИИ РОССИЙСКОГО КОЛЛЕКТИВА В 2016-2020 ГОДАХ

В рейтинговых международных журналах:

- 1. IEEE Transactions on Nuclear Science. 2016. Vol. 63. No. 4. P. 2016 2021 (Q2)
- 2. Microelectronics and Reliability. 2017. Vol. 79. P. 416-425 (Q2)
- 3. Journal of Electronic Testing: Theory and Applications (JETTA). 2017. Vol. 33. No. 1. P. 37-51 (Q3)
- 4. Sensors and Transducers. 2018. Vol. 227. No. 11. P. 42-50
- 5. Energies. 2020. Vol. 13. No. 12, 3054. P. 1-17 (Q1)
- 6. Cryogenics. 2020. Vol. 108. P. 1-6 (Q2)
- 7. IEEE Tran. On Computer-Aided Design of Integrated Circuits and Systems, 2020 (Q2)

Выступления на конференциях: RADECS, Semi-Therm, THERMINIC, MicDAT, EWDTS и др.

ВЫСОКОРЕЙТИНГОВЫЕ ЖУРНАЛЫ, В КОТОРЫХ КИТАЙЦЫ ССЫЛАЛИСЬ НА НАШИ ПУБЛИКАЦИИ ПО МОДЕЛИРОВАНИЮ (2014-2019 ГГ.)

- **1. Microelectronics Reliability**
- 2. Journal of Nuclear Science and Technology
- 3. IEEE journal of Solid-State Circuits
- 4. ECS Journal of Solid-State Science and Technology
- 5. Electronics
- 6. Nuclear Inst. And Methods in Physics Research, A
- 7. Intern. Journal of Electronics and Communication
- 8. Chinese Physics B

КИТАЙСКИЕ ОРГАНИЗАЦИИ, СОТРУДНИКИ КОТОРЫХ ССЫЛАЮТСЯ В СВОИХ ПУБЛИКАЦИЯХ НА НАШИ РАБОТЫ

- Northwest Institute of Nuclear Technology, Xi'an;
- China Institute of Atomic Energy, Beijing;
- Airforce Engineering University, Xi'an;
- Institute of Electronics Engineering, China Academy of Engineering Physics, Chengdu;
- Institute of Microelectronics, China Academy of Sciences, Beijing

- 1. Наличие технологий изготовления суб-мкм и нм-КМОП СБИС, опыт в исследовании тестовых структур;
- 2. Владение навыками TCAD и SPICE моделирования с учетом влияния радиации и температуры;
- 3. Наличие многочисленных публикаций в ведущих высокорейтинговых мировых журналах;
- 4. Сотрудники китайской команды проходили научную стажировку:
 - в США (Vanderbilt University) y Daniel Fleetwood, Ronald Schrimpf, Robert Reed;
 - во Франции (IMEP-LAHC, Minatec, Grenoble INP, University Grenoble Alps) y Sorin Cristoloveanu.

DSOI nMOSFET TID Experimental Details by IMECAS

SOI

SOI

Advantages:

good **SEU suppression** because of the buried oxide isolation(BOX)

Disadvantages:

the **TID effect** is even worse in FDSOI because of the introduction of the buried oxide layer(BOX) and the coupling effect between the front and back gate

 \approx

DSOI nMOSFET TID Experimental Details by IMECAS

With SOI2 (Advantages): •compensation of TID effect

V_{SOI2} controls the positive trapped charges in the oxide •compensate NMOS and PMOS seperately

the compensation voltages needed for NMOS and PMOS are different •reduction of back-gate effect

the back-gate effect can be suppressed with SOI2 biased at a constant voltage

P+

Sub

Ν

BOX1

SOI2

BOX2

STI

Device Structure*

0.2 µm FDSOI technology

Enclosed gate is used to avoid the leakage current from the lateral parasitic transistor.

Device Structure Parameters	Value (nm)
Gate Oxide Thickness (Tox)	4.5
Top Silicon Layer Thickness (T _{SOI1})	50
Buried Oxide Layer 1 Thickness (T _{BOX1})	150
Middle Silicon Layer Thickness (T _{SOI2})	80
Burried Oxide Layer 2 Thickness (T _{BOX2})	150

*IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 8, August 2018

SOI vs DSOI*

TID Experimental Results of DSOI(0.2μm FD NMOS

- ✓ Irradiation state: OFF
- ✓ Irradiation dose rate: 50rad(Si)/s
- ✓ Irradiation dose: high up to 5Mrad(Si), by 60 Co γ-ray

IV shift negatively due to radiation induced holes. By applying V_{SOI2} properly, IV curves can be recovered.

@IMECAS

* EUROSOI-ULIS 2019, April 2019

TCAD model for DSOI*

TCAD simulation results vs. experimental results

DSOI NMOS (W/L=8/1)

good correspondence!

@IMECAS

* EUROSOI-ULIS 2019, April 2019

3D schematic diagram of bulk Si FinFET

* Microelectronics Reliability, Vol. 88–90, September 2018

Model Parameters

Doping Concentration (/cm3) :

Channel doping :Nch=2e18SD doping:Nsd=2e20Channel stop doping :Nstop=2e18

Doping Type : nMOS: Dch: "Boron" Dsd: "Phosphorus" Dstop: "Indium"

pMOS

Dch: "Phosphorus" Dsd: "Boron" Dstop: "Arsenic"

Geometric Dimension (nm) :

Wtop=Wbottom=10Hfin=35Tsub(thickness of substrate)=1000Tsti(thickness of STI oxide)=65nmTiox(thickness of IL oxide)=0.6Thfo2(thickness of HfO2)=1.7Tox(total thickness of 14dielectric oxide)=2.3Tox(total thickness of 14

W TiN = 8.6 nm TiAl = 1.5 nm TiN = 1 nm HfO₂ = 2.3 nm IL = 0.6 nm

$$\begin{split} W_{\text{fin-top}} &= 11.72 \text{ nm} \\ W_{\text{fin-bottom}} &= 35.42 \text{ nm} \\ H_{\text{fin}} &= 44.41 \text{ nm} \\ H_{\text{STI}} &= 72 \text{ nm} \\ \theta &= 15^{\circ} \end{split}$$

* Microelectronics Reliability, Vol. 88–90, September 2018

РЕЗУЛЬТАТЫ, ПОЛУЧЕННЫЕ В 2020 ГОДУ РОССИЙСКИМ КОЛЛЕКТИВОМ

ЭКВИВАЛЕНТНАЯ СХЕМА SPICE-МОДЕЛИ DSOI МОПТ

Структура DSOI STI P+ P+ STI STI Ρ N+ Ν N+ BOX1 BOX1 SOI2 SOI2 BOX2 BOX2 Sub ~ **Device Structure Parameters** Value (nm) Gate Oxide Thickness (Tox) 4.5 Top Silicon Layer Thickness (Tsou) 50 Buried Oxide Layer 1 Thickness (TBOX1) 150 Middle Silicon Layer Thickness (T_{SOP}) 80 Burried Oxide Layer 2 Thickness (TBOX2) 150

Эквивалентная схема DSOI

Базовая модель BSIMSOIv.4.4 для МОПТ М_{FRONT} и М_{ВАСК}

РЕЗУЛЬТАТЫ РАСЧЕТА ВАХ С УЧЕТОМ ВЛИЯНИЯ ГАММА-ИЗЛУЧЕНИЯ

Прибор: DSOI n-MOПT с W/L=21,6 / 0,24 мкм Технология: 0,2-мкм КНИ КМОП Модель: BSIMSOIv4.4 с радиационно-зависимыми параметрами

Символы – эксперимент, сплошные линии – моделирование Пунктирные линии – моделирование без эквивалентной схемы Погрешность расчета ВАХ в диапазоне Dose=0...2 Мрад <12%

ТСАД-SPICE МОДЕЛИРОВАНИЕ ВОЗДЕЙСТВИЯ ОЯЧ НА 4Т ЯЧЕЙКУ SRAM НА СТРУКТУРАХ 0,2 МКМ SOI И DOUBLE-SOI MOSFET

SOI MOSFET

Double-SOI MOSFET

t_{BOX1}=70nm t_{SOI2}=77nm t_{BOX2}=75nm

ТСАД-SPICE МОДЕЛИРОВАНИЕ ВОЗДЕЙСТВИЯ ОЯЧ НА 4Т ЯЧЕЙКУ SRAM НА СТРУКТУРАХ 0,2 МКМ SOI И DOUBLE-SOI MOSFET

Ячейка SRAM на SOI MOSFET сохраняет логическое состояние до температуры не более 80°C, на DSOI MOSFET до 180°C.

Использование DSOI вместо SOI MOSFET увеличивает радиационную стойкость к воздействию ОЯЧ

ТСАД МОДЕЛИРОВАНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК FDSOI 100 HM FINFET СТРУКТУРЫ*

*IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 6, DECEMBER 2009

L = 100 нм H_{fin} = 58 нм H_{BOX} = 150 нм t_{gatox}=2 нм 34 000 элементов сетки

ТСАД МОДЕЛИРОВАНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК 60 HM FINFET СТРУКТУРЫ НА ОБЪЕМНОМ КРЕМНИИ

L = 60 нм H_{fin} = 44,41 нм t_{gatox} = 2,9 нм 67 000 элементов сетки

SPICE-MODEND BSIM-CMG ДЛЯ BULK FINFET

Символы – эксперимент, линии – моделирование

Погрешность расчета ВАХ в диапазоне Dose=0...1 Мрад <12%

SPICE-МОДЕЛИ 28-НМ BULK SI / SOI MOSFET ДЛЯ НОРМАЛЬНЫХ И **ΚΡИΟΓΕΗΗЫΧ ΤΕΜΠΕΡΑΤΥΡ**

28-нм bulk MOSFET

Модель **PSPv.103.1** с температурнозависимыми параметрами $V_{TH}(T), \mu_{eff}(T),$ SS(T)

28-нм SOI MOSFET

Модель UTSOIv.2.00 с температурнозависимыми параметрами $V_{TH}(T), \mu_{eff}(T),$ SS(T)

Символы-эксперимент, линии-моделирование

Погрешность расчета ВАХ в диапазоне Т=4 К...300 К <12%

SPICE-МОДЕЛЬ 0,18-МКМ SOI MOSFET ДЛЯ НОРМАЛЬНЫХ И КРИОГЕННЫХ ТЕМПЕРАТУР

Прибор: КНИ n-МОПТ с W/L=20/20 мкм Технология: 0,18-мкм КНИ КМОП Модель: BSIMSOIv4.4 с температурно-зависимыми параметрами

Символы–эксперимент, линии–моделирование Погрешность расчета ВАХ в диапазоне T=20 К...300 К <12%

СОВМЕСТНЫЕ ПУБЛИКАЦИИ В 2020 ГОДУ

<u>В высокорейтинговых журналах:</u>

 K.O. Petrosyants, Bo Li, L. M. Sambursky, M. V. Kozhukhov, M. R. Ismail-zade, I. A. Kharitonov SPICE Compact BJT, MOSFET and JFET Models for ICs Simulation in the Wide Temperature Range (from -200°C to +300°C // IEEE Tran. On Computer-Aided Design of Integrated Circuits and Systems, 2020

Участие китайских партнеров в научных конференциях, проводимых российской стороной:

- 1. Bo Li Double-gate SOI (DSOI): a promising candidate for high reliable microelectronics (пленарный доклад) // Moscow Workshop on Electronic and Networking Technologies (MWENT), March 2020, Moscow.
- 2. K. O. Petrosyants, D. A. Popov, M. R. Ismail-Zade, L. M. Sambursky, Bo Li, Y. C. Wang TCAD and SPICE Models for Account of Radiation Effects in Nanoscale MOSFET Structures // Труды MЭC-2020.

СОВМЕСТНОЕ УЧАСТИЕ В МЕЖДУНАРОДНЫХ НАУЧНЫХ КОНФЕРЕНЦИЯХ

1. THERMINIC 2020 (Sept., Berlin)

- M. R. Ismail-zade, K. O. Petrosyants, L. M. Sambursky, X. Zhang, B. Li, J. Luo and Z. Han SPICE Modeling of Small-Size Bulk, SOI and SOS MOSFETs at Deep Cryogenic Temperatures
- 2. MicDAT 2020 (Oct., Tenerife, Spain)
- K. O. Petrosyants, D. A. Popov, B. Li, Y. Wang TCAD-SPICE Investigation of SEU Sensitivity for SOI and DSOI CMOS SRAM Cells in Temperature Range up to 300°C
- 3. <u>RADECS 2020</u>
- Y. Wang, F. Liu, Bo Li, K. O. Petrosyants at el. Dependency of Temperature and Back-gate Bias on Single Event Upset Induced by Heavy Ion in a 0.2 μm DSOI CMOS Technology
- 4. <u>RADECS 2020</u>
- X. Zhang, F. Liu, Bo Li, K. O. Petrosyants at el. A two-dimensional electrostatic potential model for total dose ionization effects in FOI FinFETs

ЗАКЛЮЧЕНИЕ ПО ИТОГАМ РАБОТЫ ПО ПРОЕКТУ В 2020 Г.

- 1. Отработаны механизмы On-line взаимодействия между сторонами-исполнителями проекта;
- 2. Определены типы приборов для исследования (device under test – DUT): 28 нм FD SOI MOSFETs, 28 нм FinFet, Double-SOI MOSFET и др.;
- 3. Отработаны методики моделирования и экстракции параметров суб-мкм и нм-MOSFETs с помощью SPICE-моделей BSIMSOIv.4.4, PSPv.103.1, UTSOIv.2.00 и нм-FinFET с помощью BSIM-CMG.
- 4. Отработаны методики TCAD-моделирования суб-мкм и нм-MOSFET-ов без учета влияния радиации и температуры;
- Опубликовано совместных статей в высокорейтинговых журналах – 1; подано статей для публикации в журналах – 3; сделано докладов на конференциях с регистрацией трудов в системе Scopus – 6.

ПЛАНЫ НА 2021 ГОД

- 1. Настройка и верификация SPICE и TCAD моделей 28нм МОПТ на объемном кремнии и КНИ структурах при воздействии γ-лучей и ОЯЧ.
- 2. Построение SPICE моделей для 30нм FinFET необлученных и при воздействии γ-лучей.
- 3. Построение TCAD моделей для 3D структур FinFET с учетом воздействия гамма лучей.

Спасибо за внимание!

